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Propagation of Helmholtz-Gauss beams in

weak turbulent atmosphere
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Based on the Rytov approximation of light propagation in weak turbulent atmosphere, the closed-form
expressions of field and average irradiance of each one of the four fundamental families of Helmholtz-Gauss
(HzG) beams: cosine-Gauss beams, stationary Mathieu-Gauss beams, stationary parabolic-Gauss beams,
and Bessel-Gauss beams, which are propagating in weak turbulent atmosphere, are obtained. The results
show that the field and average irradiance can be written as the product of four factors: complex amplitude
depending on the z-coordinate only, a Gaussian beam, a factor of complex phase perturbation induced by
atmospheric turbulence, and a complex scaled version of the transverse shape of the non-diffracting beam.
The effect of weak atmospheric turbulence on irradiance distribution of the HzG beam can be ignored.
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Propagation of light through atmospheric turbulence has
recently attracted renewed attention due to the emer-
gence of high-capacity free-space optical communication
systems. Propagation in the atmosphere is significantly
influenced by turbulence. Therefore, it is usually desired
to find ways to reduce the turbulent effects on the prop-
agating optical beam[1−5]. A great number of studies
about using partially coherent light sources as a method
for reducing the turbulent effects and improving the sys-
tem performance have been reported. Non-diffracting
beams as new light sources have attracted attention since
Durnin first reported the generation of Bessel beams in
1987[6]. Thereafter, several exact non-diffracting solu-
tions of the wave equation have also been reported, for
instance Mathieu beams in elliptic coordinates[7,8] and
parabolic beams in parabolic coordinates[9]. It was ob-
served that the disturbance of turbulent atmosphere on
non-diffracting light beam is less than that of conven-
tional light beams[10]. In this paper, we study the propa-
gation of a non-diffracting Helmholtz-Gauss (HzG) beam
in weak turbulent atmosphere.

Let us suppose that a monochromatic wave E (~rρ, z)
with time dependence exp (−jωt) propagates in z direc-
tion which has a disturbance across the plane z = 0 given
by

E0 (~rρ) = exp
(

−r2ρ/w2
0

)

W (~rρ, kρ) , (1)

where ~rρ = (x, y) = (ρ, ϕ) denotes the transverse coor-
dinates, W (~rρ, kρ) is the transverse pattern of an ideal
non-diffracting beam W (~rρ, kρ) exp (jkzz), and w0 is the
waist size of a Gaussian envelope. The transverse (kρ)

and longitudinal (kz) components of the wave vector ~k

satisfy the relation ~k2 = ~k2
ρ + ~k2

z .
The transverse distribution W (~rρ, kρ) of the ideal

non-diffracting beam fulfills the two-dimensional (2D)
Helmholtz equation and can be expressed as a superpo-
sition of plane waves whose transverse wave numbers kρ
are restricted to a single value, that is[11]

W (~rρ, kρ) =

π
∫

−π

Ẽ (ϕ) exp [jkρ (x cosϕ+ y sinϕ)] dϕ, (2)

where Ẽ (ϕ) is the angular spectrum of the ideal non-
diffracting beam. Because non-diffracting beams can be
expanded in terms of plane waves, E (~r) is given by

E (~r) =
w0

w (z)
exp

[

−
r2ρ

w2 (z)
+ j

(

kz +
kr2ρ

2R(z)
− Θ (z)

)]

× exp

[

r20
w2 (z)

− r20
w2

0

]

exp

[

−j kr20
2R (z)

]

W

(

~rρ
µ
, kρ

)

, (3)

with r2 = r2ρ + z2, w (z) = w0

(

1 + z2/z2
R

)1/2
, µ−1 =

[w0/w (z)] exp [−jΘ (z)], R (z) = z + z2
R/z, Θ (z) =

arctan (z/zR), r0 = kρw
2
0/2. Here zR = kw2

0/2 is the

usual Rayleigh range of a Gaussian beam[11]. Equation
(??) is a solution of the homogeneous Helmholtz equation
under the paraxial regime throughout the whole space.

Based on the Rytov approximation[2,3,12], we give the
expression for the field E (~r) at any point in the atmo-
spheric turbulence half-space z > 0 as

E (~r) =
w0

w (z)
exp

[

−
r2ρ

w2 (z)
+ j

(

kz +
kr2ρ

2R(z)
− Θ (z)

)]

× exp

[

r20
w2 (z)

− r20
w2

0

]

exp

[

−j kr20
2R (z)

]

×W
(

~rρ
µ
, kρ

)

exp [ψ1 (~r)] , (4)

where ψ1 is the complex phase perturbation due to weak
turbulence and can be expressed as

ψ1 = χ+ jS, (5)

in which χ and S are the log amplitude and the phase,
respectively, at a point in the output plane.
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The average irradiance can be written as

I (~r) =

[

w0

w (z)

]2

exp

[

−
2r2ρ
w2 (z)

]

exp

[

2r20
w2 (z)

− 2r20
w2

0

]

×W 2

(

~rρ
µ
, kρ

)

exp

[

−1

2
Dψ (~r)

]

, (6)

where Dψ (~r) = Dψ (~rρ, z) = 〈ψ (~r) + ψ∗ (~r)〉 is the

spherical-wave structural function[13].
For Tatarskii spectrum of refractive-index fluctu-

ations of atmospheric turbulence, i.e. φn (κ) =
0.033C2

nκ
−11/3 exp

(

−κ2/κ2
m

)

, κm = 5.92/l0, here l0 is

the inner scale and C2
n is refractive-index structure con-

stant, the spherical-wave structural function is given by

Dψ (~rρ, z) =
[

0.545C2
nk

2z
]5/6

r2ρ.
By Eqs.(4) and (6), we investigate the propagation

characteristics of the HzG beams in weak turbulent at-
mosphere.

One of the simplest non-diffracting beams in Cartesian
coordinates is the ideal cosine field

W (~rρ, kρ) = cos (kρy) (7)

resulting from the superposition of two ideal plane waves
exp (jkρy) /2 and exp (−jkρy) /2. The expression for a
cosine-Gauss (CG) beam is given by

E (~r) =
w0

w (z)
exp

[

j

(

kz +
k
(

r2ρ − r20
)

2R(z)
− Θ (z)

)]

× exp

[

r20 − r2ρ
w2 (z)

− r20
w2

0

]

cos

(

y

µ
kρ

)

exp [ψ1 (~r)] .(8)

The average irradiance is represented as

I (~r) =

[

w0

w (z)

]2

× exp





2
(

r20 − 0.25
[

0.545C2
nk

2z
]5/6

r2ρ − r2ρ

)

w2 (z)
− 2r20
w2

0





× cos2
(

y

µ
kρ

)

. (9)

Bessel beams are exact non-diffracting solutions of the
scalar wave equation in circular cylindrical coordinates[6].
The transverse field of the mth-order Bessel beam reads
as

W (~rρ, kρ) = Jm (kρy) exp (jmϕ) , (10)

where Jm(·) is the mth-order Bessel function. Apply-
ing Eq. (4), we find the expression for the Bessel-Gauss

beams to be

E (~r) =
w0

w (z)
exp

[

j

(

kz +
k
(

r2ρ − r20
)

2R(z)
− Θ (z)

)]

× exp

[

r20 − r2ρ
w2 (z)

− r20
w2

0

]

Jm

(

kρrρ
µ

)

× exp (jmϕ) exp [ψ1 (~r)] , (11)

and the average irradiance is written as

I (~r) =

[

w0

w (z)

]2

× exp





2
(

r20 − 0.25
[

0.545C2
nk

2z
]5/6

r2ρ − r2ρ

)

w2 (z)
− 2r20
w2

0





×J2
m

(

rρ
µ
kρ

)

. (12)

The third family of non-diffracting beams results from
the solution of the wave equation in elliptic cylindrical
coordinates[7,8]. Since the transverse pattern of such
beams is described by the Mathieu functions, they are
called Mathieu beams.

The exact analytical expression for the Mathieu-Gauss
(MG) beams of any order has not been reported yet.
But, the transverse fields of the mth-order even and odd
Mathieu beams can be written as

W e (~rρ, kρ) = Jem (ξ, q) cem (η, q) ,

W o (~rρ, kρ) = Jom (ξ, q) sem (η, q) , (13)

where Jem [·] and Jom [·] are the mth-order even and odd
modified Mathieu functions, respectively, and cem [·] and
sem [·] are the mth-order even and odd ordinary Mathieu
functions, respectively. The parameter q = f2k2

ρ/4, 2f is
the interfocal separation.

From Eqs. (4) and (13), the closed-form expressions
for the propagation of the mth-order even and odd MG
beams are found to be

E (~r)
e

=
w0

w (z)
exp

[

j

(

kz +
k
(

r2ρ − r20
)

2R(z)
− Θ (z)

)]

× exp

[

r20 − r2ρ
w2 (z)

− r20
w2

0

]

Jem
(

ξ̄, q
)

cem (η̄, q)

× exp [ψ1 (~r)] , (14a)

E (~r)
o

=
w0

w (z)
exp

[

j

(

kz +
k
(

r2ρ − r20
)

2R(z)
− Θ (z)

)]

× exp

[

r20 − r2ρ
w2 (z)

− r20
w2

0

]

Jom
(

ξ̄, q
)

som (η̄, q)

× exp [ψ1 (~r)] , (14b)
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where in a transverse z plane the complex elliptic vari-
ables

[

ξ̄, η̄
]

are determined by

x = f0 (1 + z/zR) cosh ξ̄ cos η̄,

y = f0 (1 + z/zR) sinh ξ cosh η̄, (15)

where f0 is the semifocal separation at the waist plane
z = 0. The average irradiances are given by

I (~r)
e

=

[

w0

w (z)

]2

× exp





2
(

r20 − 0.25
[

0.545C2
nk

2z
]5/6

r2ρ − r2ρ

)

w2 (z)
− 2r20
w2

0





×Re
[

Jem
(

ξ̄, q
)

cem (η̄, q)
]2
, (16a)

I (~r)
o

=

[

w0

w (z)

]2

× exp





2
(

r20 − 0.25
[

0.545C2
nk

2z
]5/6

r2ρ − r2ρ

)

w2 (z)
− 2r20
w2

0





×Re
[

Jom
(

ξ̄, q
)

sem (η̄, q)
]2
. (16b)

The parabolic beams are the fourth family of funda-
mental non-diffracting beams[9]. It was found that the
transverse structure of the parabolic beams is described
by the parabolic functions and, contrary to Bessel or
Mathieu beams, their eigenvalue is continuous instead
of discrete.

The parabolic cylindrical coordinates (ξ, η) are defined
by[9] x =

(

η2 − ξ2
)

/2 and y = ξη, in which the variables
range in ξ ∈ [0,∞) and η ∈ (−∞,∞). The transverse
fields of the even and odd parabolic beams are written
as[9]

W e (ξ, η, kρ) =
|Γ1|2

π
√

2
Pe

(

√

2kρξ; a
)

Pe

(

√

2kρη;−a
)

,

(17a)

W o (ξ, η, kρ) =
|Γ3|2

π
√

2
Po

(

√

2kρξ; a
)

Po

(

√

2kρη;−a
)

,

(17b)

where Γ1 = Γ
(

1
4 + 1

2ja
)

, Γ3 = Γ
(

3
4 + 1

2ja
)

and the
parameter a represents the order of the beam and can
be assumed any real value in the range (−∞,∞). The
functions Pe(·) and Po(·) are the even and odd solu-
tions to the parabolic cylindrical differential equation
[

d2/dx2 +
(

x2/4 − a
)]

P (x, y) = 0.
Applying Eq. (4) and also noting that (x/µ, y/η) →

(

ξ/
√
µ, η/

√
µ
)

for parabolic coordinates, we find the ex-
pression for the even and odd parabolic-Gauss (PG)

beams to be

E (~r, a)
e

=
w0

w (z)
exp

[

j

(

kz +
k
(

r2ρ − r20
)

2R(z)
− Θ (z)

)]

× exp

[

r20 − r2ρ
w2 (z)

− r20
w2

0

]

|Γ1|2

π
√

2
Pe

(

√

2kρξ; a
)

×Pe

(

√

2kρη;−a
)

exp [ψ1 (~r)] ,

E (~r, a)
o

=
w0

w (z)
exp

[

j

(

kz +
k
(

r2ρ − r20
)

2R(z)
− Θ (z)

)]

× exp

[

r20 − r2ρ
w2 (z)

− r20
w2

0

]

|Γ3|2

π
√

2
Po

(

√

2kρξ; a
)

×Po

(

√

2kρη;−a
)

exp [ψ1 (~r)] .

And we have

I (~r)e =

[

w0

w (z)

]2

× exp





2
(

r20 − 0.25
[

0.545C2
nk

2z
]5/6

r2ρ − r2ρ

)

w2 (z)
− 2r20
w2

0





×Re

[

|Γ1|2

π
√

2
Pe

(

√

2kρξ; a
)

Pe

(

√

2kρη;−a
)

]2

, (18a)

I (~r)o =

[

w0

w (z)

]2

× exp





2
(

r20 − 0.25
[

0.545C2
nk

2z
]5/6

r2ρ − r2ρ

)

w2 (z)
− 2r20
w2

0





×Re

[

|Γ3|2

π
√

2
Po

(

√

2kρξ; a
)

Po

(

√

2kρη;−a
)

]2

. (18b)

We will now discuss the effect of atmospheric tur-
bulence on irradiance distribution of the HzG beam.
Because W (~rρ, kρ) exp (jkzz) is an ideal non-diffracting

beam, we can use the factor |W (~rρ, kρ)|2 to normalize
the irradiance distribution of the HzG beam, namely

Ĩ
(

~r, C2
n

)

=
I
(

~r, C2
n

)

|W |2

=

[

w0

w (z)

]2

exp

[

−
2r2ρ
w2 (z)

]

exp

[

2r20
w2 (z)

− 2r20
w2

0

]

× exp

[

−1

2

[

0.545C2
nk

2z
]5/6

r2ρ

]

. (19)
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Fig. 1. Irradiance distribution of HzG beams in atmospheric
turbulence. The curves for C

2

n = 0, 1 × 10−17, 5 × 10−17,
1 × 10−16, 5 × 10−16 m−2/3 are approximately overlapping.

The normalized irradiance distribution Ĩn (~r) =

Ĩn
(

rρ, z, C
2
n

)

(here we have set the normalized irradiance

distribution Ĩn (~r) to follow the relationship Ĩn (0, z, 0) =
1) as a function of rρ is depicted in Fig. 1 for C2

n = 0,

1 × 10−17, 5 × 10−17, 1 × 10−16, 5 × 10−16 m−2/3, and
z = 1000 m, λ = 0.6328 µm, w0 = 0.05 m, kρ = 105

m−1. Figure 1 shows that the curves of irradiance distri-
bution are approximately overlapping. It is shown that
the effect of weak atmospheric turbulence on irradiance
distribution of the HzG beam can be ignored.

In conclusion, a detailed analysis of the propagation
in weak atmospheric turbulence of an arbitrary non-
diffracting beam whose disturbance in the plane z = 0 is
modulated by a Gaussian envelope has been presented.
We have found that the HzG beams which are propagat-
ing through the whole space can be described by a simple
and elegant closed-form expression composed of an am-
plitude factor depending on the z-coordinate, a Gaussian

beam, a turbulent fluctuation factor and a scaled version
of the transverse shape of the ideal non-diffracting beam.
Our analysis revealed the conservation of non-diffracting
behavior of the HzG beams propagation in the weak at-
mospheric turbulence region.
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